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A universal equivalent circuit model for the

impedance response of composites

L. Y. WOO, S. WANSOM, A. D. HIXSON, M. A. CAMPO, T. O. MASON
Department of Materials Science and Engineering, Northwestern University, Evanston,
IL 60208, USA

An equivalent circuit model has been developed to describe the impedance response of
composites with insulating or conductive particles or fibers. Required inputs are the matrix
conductivity, the “intrinsic conductivity” of the particles, and their volume fraction. The
model has general applicability to systems involving moderately conductive matrices,
insulating or conductive particles/fibers, and, in the case of conducting particles, the
presence of a high impedance “coating” element on the particle surfaces. Ramifications for
the use of impedance spectroscopy in the characterization of composite properties and the
monitoring of their performance under load are discussed. C© 2003 Kluwer Academic
Publishers

1. Introduction
There is recent evidence regarding the influence of in-
clusions (particles, fibers) on the AC impedance re-
sponse of electrocomposites, including ceramic-matrix
[1–3], cement-matrix composites [4–8], and even
polymer-matrix systems [9] . This is in addition to ex-
tensive literature regarding the influence of conduct-
ing or insulating particles/fibers on the DC electrical
properties of composites, e.g., as reviewed in [10–13].
While the effect of insulating particles on DC conduc-
tivity tends to be small (and negative), the effect of con-
ducting particles on the AC conductivity can be quite
pronounced (and positive), especially if fibers or sim-
ilar objects with large aspect ratios (length divided by
diameter) are involved.

It was recently demonstrated that conductive par-
ticle composites can exhibit unusual “dual arc”
impedance behavior in Nyquist or −imaginary vs.
+real impedance diagrams [1–3, 5–9]. For this to occur
the matrix must be moderately conductive, the particles
must be highly conductive, and a high impedance layer
must exist at the particle surfaces. This layer can arise
due to passive oxide film formation (e.g., on steel parti-
cles in cement matrices), electrochemical charge trans-
fer resistance/double layers (e.g., on carbon particles in
cement matrices), or Schottky barrier formation (e.g.,
between dissimilar semiconductors). A conceptual
picture of this behavior is provided by the “frequency-
switchable coating model [7].” At DC or low frequency
AC excitation, the coating (film, layer, barrier) is in-
tact, and the particles behave as if they are insulating
with respect to the matrix. With increasing frequency,
however, displacement currents through the coatings
short out their high impedance, rendering the underly-
ing particles conductive relative to the matrix. Typical
impedance spectra exhibit two cusps (minimum abso-
lute values of imaginary impedance)—one at the DC

resistance of the composite (particles insulating) and
one at the AC resistance of the composite (particles
conductive).

Chung and coworkers have written extensively about
potential applications of fiber-reinforced composites
as “smart” materials, i.e., their capability for self-
monitoring based upon changes in DC electrical proper-
ties [14–17]. The impedance response of such materials
should provide complementary monitoring capabilities
[18, 19]. An important step toward understanding
and utilizing the impedance response of electrocom-
posites is the development of an equivalent circuit
model for their behavior. The present work investi-
gated model composites consisting of cement-matrices
with insulating (glass) and conductive (steel) parti-
cles/fibers. The equivalent circuit developed to describe
their impedance response is completely general and
should apply to all composites fulfilling the criteria
listed above.

2. Experimental procedure
Fiber-reinforced composites were prepared with type I
ordinary Portland cement (OPC) at a water-to-cement
ratio of 0.4 by weight. Steel fibers (2 mm long, 30 µm
diameter) were dry-mixed with the cement powder by
hand for 1 min. Water was then mixed in by hand for
3 min, after which the mixture was blended at high
speed in a commercial blender for 2 min to achieve
homogeneity. By magnetic separation and optical mi-
croscopy, a sampling of fibers from a similarly pro-
cessed fresh paste showed no noticeable alteration in
fiber geometry (i.e., bending or length changes) due
to processing. Plain OPC specimens (without fibers)
were mixed in a similar manner. Specimens were cast
in rectangular polycarbonate molds (25 mm by 25 mm
by 100 mm) with stainless steel electrodes (20 mm by
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Figure 1 Experimental set-up for impedance and 4-point DC resistance
measurements.

30 mm by 0.5 mm) cast in place approximately 5 mm
from each end, producing an inter-electrode spacing of
90 mm. All samples were stored under 100% relative
humidity (RH) during curing for 3 days.

Composites with spherical inclusions, steel ball bear-
ings or glass beads, were similarly prepared from type
I ordinary Portland cement (OPC) at a water-to-cement
ratio of 0.4 by weight. The dry powder and water were
mixed by hand for approximately 3 min prior to blend-
ing at high speed in a commercial blender for 2 min
to achieve homogeneity. The slurries were allowed to
set for an appropriate time (∼3 h) to achieve a vis-
cosity sufficient to prevent subsequent settling by the
steel ball bearings (3.18 mm diameter, Bearing Distrib-
utors, Wheeling, IL) or glass beads (3.0 mm diame-
ter, Fox Industries, Fairfield, NJ), which were mixed
in by hand. The viscous mixtures were then cast into
rectangular polycarbonate molds (25 mm × 25 mm
× 100 mm) with stainless steel electrodes (20 mm ×
30 mm × 0.5 mm) cast in place 5 mm from each end
(90 mm inter-electrode spacing), as in Fig. 1. Samples
were cured under 100% RH for 7 days.

After curing, both fiber and particle composites were
de-molded. The embedded steel electrodes served as
2-point impedance electrodes and as the current leads
for 4-point DC resistance measurements. Voltage con-
tacts for 4-point DC measurements were made by
tightly wrapping 0.25 mm diameter steel wire loops
around the samples, as shown in Fig. 1. Silver paste
was painted over the wire loops in 2 mm wide strips to
ensure electrical contact with the specimens. An enamel
sealant was then used to seal the silver paste to prevent
water (and contact) loss at these electrodes.

For 2-point impedance measurements, a Solartron
1260 impedance/gain-phase analyzer was employed
with Z-60 personal computer software for data acquisi-
tion (Schlumberger, Houston, TX). The excitation volt-
age was 1 V and scans were performed from 11 MHz
to 5 Hz, with data collected at 20 steps per frequency
decade. The 4-point DC resistance measurements were
carried out with a programmable current source and
digital multimeter using LabVIEW personal computer
software for data acquisition (Keithley, Models 220 and
2000, Cleveland, OH). For resistance measurements,
current was applied to the outer electrodes of Fig. 1 in
increments of 1 mA from 10 mA to –10 mA.

Equivalent circuit analysis was carried out using the
“Equivalent Circuit” software program of Boukamp

[20]. The simulation subroutine in this program is quite
powerful and capable of simulating complex equivalent
circuits involving resistors, capacitors, and so-called
“complex phase elements” (see below).

3. Experimental results and analysis
Fig. 2a displays a typical result, plotted in terms of
−imaginary vs. +real impedance (Nyquist represen-
tation), for a 0.35 vol% steel fiber-reinforced OPC
composite vs. plain OPC. Fig. 3a shows typical results
for composites with 20 vol% steel or glass spheres
vs. plain OPC. To the right side (high impedance, low
frequency) of each plot there is the start of a large
electrode arc. It is well known that a highly resistive
passive oxide film forms on steel electrodes when
submerged in the high pH pore solution of OPC. For
plain OPC and OPC with insulating inclusions there
is a single point of minimum imaginary impedance
(or rather the absolute value of imaginary impedance,
which is negative in value). To the left of this point
there is a single bulk arc. The shape of this arc does not
change with the addition of insulating particles, but
it shifts to the right (increased resistance, decreased
conductivity). The bulk-electrode intersection agrees
well with the 4-point DC resistance of the specimen
in each case, within experimental error (±5%, based
upon the uncertainty in geometric factors).
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Figure 2 (a) Typical Nyquist plots for plain OPC and 0.35 vol% steel-
reinforced OPC composite at 3 days, with frequency markers (log
of frequency in Hz). (b) Simulated Nyquist plots for plain OPC and
0.35 vol% steel-reinforced OPC composite, with frequency markers.
A dispersion factor of 0.26 was assumed (see the Appendix) and the
following parameters were employed (Boukamp notation, see text):
([R(RQ)(RQ)][(RQ)(RQ))])(RQ) = 0.01 �, 7102 �, 2.9 × 10−10 F
(0.75), 8 × 105 �, 1.5 × 10−6 F (0.65), 2030 �, 1 × 10−9 F (0.75), 11.9
�, 1.7 × 10−7 F (0.85), 8 × 103 �, 1.5 × 10−4 F (0.9), with n-values
(see text Equations 8 and 9) in parentheses.
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Figure 3 (a) Typical Nyquist plots for plain OPC and 20 vol% steel
ball-reinforced or glass ball-reinforced OPC composites at 7 days, with
frequency markers (log of frequency in Hz). (b) Simulated Nyquist plots
for plain OPC and 20 vol% steel-reinforced OPC composite, with fre-
quency markers. The following parameters were employed (Boukamp
notation, see text): ([R(RQ)(RQ)][(RQ)(RQ))])(RQ) = 0.01 or 109 �,
1469 �, 1.1 × 10−9 F (0.75), 5 × 106 �, 1.5 × 10−6 F (0.87), 1632
�, 1 × 10−9 F (0.75), 629 �, 2.6 × 10−9 F (0.65), 5 × 104 �, 1.5 ×
10−4 F (0.75), with n-values (see text Equations 8 and 9) in parentheses.

On the other hand, the addition of conductive parti-
cles/fibers results in two bulk arcs with a distinct cusp
between them. We hereafter refer to this point as the
“cusp frequency” or “cusp resistance” (Rcusp). The in-
tersection between rightmost bulk arc and the electrode
arc is not as distinct, but agrees (within experimental
error) with the 4-point DC resistance of each sample.

We have previously interpreted the behavior with
conductive fibers in terms of a “frequency-switchable
coating model” [7]. The basic outline is given in Fig. 4.
Rm and Cm stand for the resistance and capacitance, re-
spectively, of the matrix phase. R∗

m and C∗
m stand for the

resistance and capacitance of inter-fiber regions along
the “fiber” path. The same highly resistive passive ox-
ide film that forms on the measurement electrodes also
forms on individual steel fibers. At DC and low AC fre-
quencies the oxide film isolates each fiber, effectively
opening the “switch” in the lower path of Fig. 4b. Cur-
rent flow through the surrounding matrix is relatively
unaffected by the presence of the fiber, as shown by the
dotted lines in Fig. 4a. As frequency increases, how-
ever, displacement currents through the oxide film short
it out, the switch in Fig. 4b is “thrown”, and the lower
path dominates current flow as shown by the solid lines
in Fig. 4a. Computer-generated gray-scale images of
current flow under both conditions can be found in
[7]. At DC the fiber appears black (no current), with
a uniform gray level for the surrounding matrix. At the

Figure 4 (a) Conceptual model for the current flow at DC (dotted lines)
and at the cusp frequency under AC excitation (solid lines). (b) Equivalent
circuit of the “frequency-switchable coating model” where Rm and Cm

are the resistance and capacitance, respectively, of the matrix phase and
R∗

m and C∗
m are the resistance and capacitance of inter-fiber regions along

the “fiber” path.

cusp frequency the wire is white (high current), as is
the matrix near the wire tips (current bunching), while
the matrix surrounding the middle of the fiber is dark
(little current here due to the matrix being bypassed by
the fiber short-circuit path).

Although the equivalent circuit in Fig. 4 is concep-
tually adequate, it would be useful to have a more
quantitative model to describe the impedance behav-
ior of composites, including electrode effects (absent
in Fig. 4). A more comprehensive equivalent circuit is
shown in Fig. 5. The subscript “m” stands for matrix,
whereas the subscript “c” stands for coating. Although
application will be made to the steel-cement system,
where the coating is a passive oxide film, the approach is
completely general and can be readily extended to other
types of systems. In all cases the subscript “p” stands
for the particles/fibers. In the “circuit description code”
(CDC) of Boukamp’s program [20], the equivalent

Figure 5 Comprehensive equivalent circuit model where the subscript
“m” stands for the matrix, “c” for coating, and “p” for the particles/fibers.
R and C are resistance and capacitance.
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circuit of Fig. 5 is given by:

([R(RC)(RC)][(RC)(RC)])(RC) (1)

where R = resistor, C = capacitor, and values are en-
tered from left to right in the equivalent circuit, begin-
ning with the lower “fiber” path, then the upper “matrix”
path, and finally the electrode (the final (RC)) or coating
element.

We begin by considering the situation involving in-
sulating particles. The present simulations assumed
Rp = 109 �, although any suitably high value of re-
sistance can be used. This effectively eliminates the
bottom “fiber” path from playing a role. Nevertheless,
insulating particles can play a significant role in reduc-
ing conductivity (increasing resistance), as shown in
Fig. 3a. Therefore, an additional (R′

mC ′
m) element is

added in series to the matrix path in Fig. 5. The only
requirement is that the time constants be identical, i.e.,
(R′

mC ′
m) = (RmCm), where Rm and Cm are the resis-

tance and capacitance, respectively, of the matrix ma-
terial, thereby resulting in a single bulk arc for the top
path. To relate R′

m, or rather the sum of R′
m and Rm to

particle/fiber volume fraction, we can employ the con-
cept of “intrinsic conductivity”. Based upon Maxwell’s
equation, Douglas and Garboczi [21] showed that in the
dilute (low concentration) limit:

σ/σm = Rm/R = 1 + [σ ]�φ + 0(φ2) (2)

where σm and Rm stand for the conductivity and
resistance, respectively, of the matrix phase and σ

and R stand for the conductivity and resistance, re-
spectively, of the composite (in the present situation,
R = Rm + R′

m). In Equation 2, φ is the volume
fraction of particles, [σ ]� is the intrinsic conductiv-
ity, and higher order terms are neglected. Douglas and
Garboczi tabulated and/or calculated intrinsic conduc-
tivities for a wide range of particle shapes in both the
insulating (� = 0) and conducting (� = ∞) regimes.
For example, spheres have intrinsic conductivities of
[σ ]0 = −3/2 and [σ ]∞ = +3. Insulating right cylinders
with aspect ratios (length divided by diameter) greater
than 10 have an intrinsic conductivity of [σ ]0 = − 5/3
[20]. Conducting right cylinders are more difficult to
evaluate, but we recently reported a modified form of
Fixman’s equation [22, 23]:

[σ ]∞ = 1

3

(
2(AR)2

[3 ln{4(AR)} − 7]
+ 4

)
(3)

where AR is aspect ratio, which estimates the intrinsic
conductivity to within ±10%. It follows that fibers with
large aspect ratios can have extremely high intrinsic
conductivities in the conductive regime, resulting in
large increases in conductivity (decreases in resistance)
for small volume fraction additions, as shown in Fig. 2a.

Given the appropriate intrinsic conductivity of the
dispersed particle and Equation 2, it can be shown that:

R′
m =

( −[σ ]0φ

1 + [σ ]0φ

)
Rm (4)

Since [σ ]0 values are negative, R′
m will be positive as

anticipated. To maintain the (R′
mC ′

m) = (RmCm) time
constant, C ′

m is adjusted accordingly,

C ′
m =

( −[σ ]0φ

1 + [σ ]0φ

)−1

Cm (5)

In the case of conducting particles/fibers, Rp is given
a negligibly small value (0.01 � in the present work).
This activates the lower path in Fig. 5. Values of R′

c and
C ′

c are chosen to match the time constant of the elec-
trode (RcCc), but with R′

c >> Rc (in the present work the
best fits were achieved for R′

c approximately 100 times
larger than Rc). This ensures that the lower path has
high resistance at DC and low AC frequencies. Based
upon Equation 2 and the appropriate intrinsic conduc-
tivities of the dispersed particles, it can be shown that:

R′′
m =

[
1

([σ ]∞ − [σ ]0)φ

]
Rm (6)

The appearance of both intrinsic conductivities arises
due to the necessity of the parallel R′′

m to compensate
for the increased resistance due to R′

m in the upper path.
To maintain the (R′′

mC ′′
m) = (RmCm) time constant, C ′′

m
is adjusted accordingly,

C ′′
m = [([σ ]∞ − [σ ]0)φ]Cm (7)

Successful simulations required the replacement of
all capacitors in the equivalent circuit of Fig. 5 with con-
stant phase elements (CPEs). The impedance function
of a CPE is:

Z (CPE) = B( jω)−n (8)

where B is a constant, ω is angular frequency, and n is
a measure of arc-depression (θ ):

n = 1 − 2θ/π (9)

For a perfect capacitor, n = 1 and B−1 is the capaci-
tance. It can be seen that the experimental impedance
arcs in Figs 2a and 3a are somewhat depressed below
the real axis. We therefore obtained the best fit with the
following CDC code:

([R(RQ)(RQ)][(RQ)(RQ)])(RQ) (10)

while maintaining (R′
m Q′

m) = (Rm Qm), (R′′
m Q′′

m) =
(Rm Qm), and n-values as given in the figure captions
of Figs 2b and 3b. The values employed are consis-
tent with typical values for plain OPC and the associ-
ated electrode arc (oxide film on steel) [5]. It should
be stressed that we are fitting with three time-constants
(bulk, oxide coating, electrode oxide), and the associ-
ated 9 adjustable parameters (R, Q, n for each type of
element), which the three-arc spectra (two bulk arcs
plus one electrode arc) will just allow.

Figs 2b and 3b show simulated impedance plots for
the fiber-reinforced and spherical particle composites,
respectively. In the case of spherical inclusions, the
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agreement with the experimental results is quite good
(Fig. 3b vs. a). By switching the value of Rp from 109 �

(insulating particles/fibers) to 0.01 � (conducting parti-
cles/fibers), both situations in Fig. 3a were successfully
simulated in Fig. 3b. In the case of conducting particles,
the characteristic dual-arc (bulk) behavior was success-
fully obtained. The spherical particle composites had a
loading level beyond the “dilute limit” (φ ∼ 0.1), so
the intrinsic conductivity had to be corrected by the
formula [24]:

[σ ]∞ = 3 + 4.5φ + 5.25(φ2) (11)

This points to the necessity of correcting intrinsic con-
ductivities if outside the dilute limit. At the smaller
loading levels for chopped fiber cement-based com-
posites this should not be a problem.

The agreement between model and measured spectra
is not as good for the fiber-reinforced composite (Fig. 2b
vs. a). This may be due to incomplete dispersion of the
fibers, i.e., fiber clumping. In separate work, we have
developed a “dispersion factor” related to the degree of
fiber dispersion in a given composite. A brief summary
of this development is given in the Appendix. To make
the “cusp” resistance in Fig. 2b agree with the experi-
mental result in Fig. 2a, it was necessary to assume a
dispersion factor of 0.26. This suggests that a high de-
gree of fiber clumping is present (no dispersing agent
was employed), which may likewise be responsible for
the large arc depression evident in the experimental
data. The influence of fiber clumping on the impedance
response of fiber-reinforced composites is the subject
of ongoing research.

The present work shows that it is possible to predict
the impedance response of a composite with particles
of arbitrary shape, as long as the intrinsic conductivities
(insulating and conductive) are known and the volume
fraction of particles is given. In the conductive regime
the fibers must be highly conductive with respect to a
moderately conductive matrix, and a high interfacial
impedance is required. It must be stressed that parti-
cle dispersion must be homogeneous and random in-
sofar as orientation (e.g., of fibers) is concerned. If so,
the resulting composite properties should be isotropic.
Impedance measurements vs. direction of applied field
are a good test for isotropy in a given material.

Alternatively, deviations from predicted behavior can
be used as a monitor for inhomogeneity and/or align-
ment problems (in the case of fibers, for example)
caused by processing. Furthermore, deviations from
predicted behavior or from that of as-prepared materials
may prove useful for monitoring damage in composites
under load or cyclic fatigue [18, 19].

4. Conclusions
A universal equivalent circuit model has been devel-
oped for a restricted class of composites. Given highly
conductive particles/fibers, a moderately conductive
matrix, and a high impedance “coating” (oxide film,
charge transfer resistance/double layer, Schottky bar-
rier, etc.) on the particles/fibers, a frequency-switchable

coating effect allows for the particles/fibers to behave
as if insulating at DC and low AC frequencies, but
as if conducting at certain AC frequencies. Two bulk
arcs are obtained in Nyquist (−imaginary vs. +real
impedance) plots. The equivalent circuit consists of two
bulk components in series, the latter accounting for the
increased resistance due to the added “insulating” parti-
cles, which are in turn in parallel with a “particle” path
consisting of particle resistance (can be high or low,
to simulate insulating vs. conducting particles), a bulk
component (to account for decreased resistance due to
added “conducting” particles), and a coating element.
The RC time constant of the coating element matches
that of the external electrode element, but with a suit-
ably higher resistance to eliminate the particle path at
DC and low AC frequencies. The RC time constants
of all three bulk components are identical. For cement-
based composites, constant phase elements (CPEs) are
employed to suitably model arc depression; RC ele-
ments are replaced by RQ elements, where Q repre-
sents a CPE. The circuit description code in Boukamp’s
formalism is given by ([R(RQ)(RQ)][(RQ)(RQ)])(RQ).
Given the intrinsic conductivities of the particles/fibers
employed, equations are provided to calculate all the
requisite component values and successfully predict the
impedance response of a given composite.

Acknowledgments
This work was supported by the National Science Foun-
dation under grant no. DMR-00-73197 and made use
of facilities of the Center for Advanced Cement-Based
Materials.

Appendix
With well dispersed, highly conductive fibers, the
matrix-normalized conductivity of a fiber-reinforced
composite can be expressed as [21]:

σ/σm = Rm/R = 1 + [σ ]�φ (A1)

where m stands for matrix, σ is conductivity, R is re-
sistance, [σ ]� is the intrinsic conductivity of the fiber,
and φ is its volume fraction. Since we are consider-
ing small volume fractions (e.g., 0.0035), higher order
terms can be neglected. If fiber clumping takes place,
Equation A1 must be modified to:

σ/σm = Rm/R = 1 + [σ ]�φ′ +
∑

[σ ]�iφi (A2)

where φ′ is the volume fraction of dispersed fibers and
φi is the volume fraction of each specific type of fiber
cluster having intrinsic conductivity [σ ]�i. Subtracting
1 from both sides of Equations A1 and A2 and dividing,
we obtain the “dispersion factor” as:

DF =
[(

σ
σm

)
composite − 1(

σ
σm

)
dispersed − 1

]
= φ′

φ
+

∑
[σ ]�i φi

[σ ]� φ
(A3)

where the first term on the right side of the equation is
the fraction of fibers which are dispersed in the matrix,
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and the second term represents the contributions of all
fiber clumps to the overall conductivity. We have con-
sidered clumps and clusters of various types, most of
which result in significant decreases in intrinsic conduc-
tivity vs. that of isolated fibers. For example, a sheath
of n fibers will have approximately the same effect on
local current flow as a single fiber, but at n times the
volume fraction; its intrinsic conductivity (for identi-
cal volume fraction) will be approximately n−1 that of
isolated fibers ([σ ]�).

In Equation A3 the composite (σ /σm) value is identi-
cal to the ratio, Rm/R, where Rm is the “cusp” resistance
between the two bulk arcs (e.g., ∼1600 � in Fig. 2a)
and either the bulk/electrode cusp for the composite or,
preferably, the DC resistance of the plain matrix (e.g.,
∼2050 �). The (σ /σm) value for the fully dispersed sys-
tem can be calculated using Equation A1, based upon
the volume fraction and the intrinsic conductivity of
the fibers employed. In the present case, the aspect ra-
tio was 67 (2 mm by 30 µm diameter) and the volume
fraction was 0.35%. From text Equation 3 the intrinsic
conductivity is estimated to be 308 and the conductiv-
ity ratio (σ /σm) should be 2.08. This is to be compared
with the experimental value of 1.28 (2050 �/1600 �).
The result is a “dispersion factor” of 0.26. It should be
noted that this is not the fraction of dispersed fibers,
but rather an upper limit for the fraction of dispersed
fibers. The second term in Equation 3 may be signif-
icant or insignificant, depending upon the characteris-
tics of the clumps/clusters formed and their individual
intrinsic conductivities. A more thorough theoretical
treatment of this impedance-based “dispersion factor”
will be published separately.
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